Depolarization of cochlear outer hair cells evokes active hair bundle motion by two mechanisms.
نویسندگان
چکیده
There is current debate about the origin of mechanical amplification whereby outer hair cells generate force to augment the sensitivity and frequency selectivity of the mammalian cochlea. To distinguish contributions to force production from the mechanotransducer (MET) channels and somatic motility, we have measured hair bundle motion during depolarization of individual outer hair cells in isolated rat cochleas. Depolarization evoked rapid positive bundle deflections that were reduced by perfusion with the MET channel blocker dihydrostreptomycin, with no effect on the nonlinear capacitance that is a manifestation of prestin-driven somatic motility. However, the movements were also diminished by Na salicylate and depended on the intracellular anion, properties implying involvement of the prestin motor. Furthermore, depolarization of one outer hair cell caused motion of neighboring hair bundles, indicating overall motion of the reticular lamina. Depolarization of solitary outer hair cells caused cell-length changes whose voltage-activation range depended on the intracellular anion but were insensitive to dihydrostreptomycin. These results imply that both the MET channels and the somatic motor participate in hair bundle motion evoked by depolarization. It is conceivable that the two processes can interact, a signal from the MET channels being capable of modulating the activity of the prestin motor.
منابع مشابه
Evidence for an active process and a cochlear amplifier in nonmammals.
The last two decades have produced a great deal of evidence that in the mammalian organ of Corti outer hair cells undergo active shape changes that are part of a "cochlear amplifier" mechanism that increases sensitivity and frequency selectivity of the hearing epithelium. However, many signs of active processes have also been found in nonmammals, raising the question as to the ancestry and comm...
متن کاملContribution of active hair-bundle motility to nonlinear amplification in the mammalian cochlea.
The cochlea's high sensitivity stems from the active process of outer hair cells, which possess two force-generating mechanisms: active hair-bundle motility elicited by Ca(2+) influx and somatic motility mediated by the voltage-sensitive protein prestin. Although interference with prestin has demonstrated a role for somatic motility in the active process, it remains unclear whether hair-bundle ...
متن کاملActive cochlear amplification is dependent on supporting cell gap junctions
Mammalian hearing relies upon active cochlear mechanics, which arises from outer hair cell electromotility and hair bundle movement, to amplify acoustic stimulations increasing hearing sensitivity and frequency selectivity. Here we describe the novel finding that gap junctions between cochlear supporting cells also have a critical role in active cochlear amplification in vivo. We find that targ...
متن کاملMechanisms of active hair bundle motion in auditory hair cells.
Sound stimuli vibrate the hair bundles on auditory hair cells, but the resulting motion attributable to the mechanical stimulus may be modified by forces intrinsic to the bundle, which drive it actively. One category of active hair bundle motion has properties similar to fast adaptation of the mechanotransducer channels and is explicable if gating of the channels contributes significantly to th...
متن کاملCochlear Processes: a Research Report
This paper summarizes recent research on functions of the cochlea of the inner ear. The cochlea is described as the seat of the first step in the auditory sound analysis and transduction of mechanical vibration into electrochemical processes leading to the generation of neural action potentials. The cochlea is also described as a frequent seat of auditory disorders. This research summary addres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 10 شماره
صفحات -
تاریخ انتشار 2006